Strona główna nauka/tech Jak pojedynczy atom wodoru napędza reakcje energetyczne życia

Jak pojedynczy atom wodoru napędza reakcje energetyczne życia

11
0


Koncepcja sztuki reakcji energetycznej
Japońscy badacze zidentyfikowali mechanizm występujący w ferredoksynie, który kontroluje jej zdolność do przenoszenia elektronów, kluczową dla procesów energetycznych w formach życia. Ich analiza pokazuje, że pojedynczy atom wodoru działa jak „nanoprzełącznik”, potencjalnie wpływając na rozwój nowych czujników i leków. Źródło: SciTechDaily.com

Nowe badanie ujawnia „nanoprzełącznik” w ferredoksynie, który wpływa na przenoszenie elektronów, co może prowadzić do postępu w czujnikach i opracowywaniu leków.

Naukowcy z Japonii odkryli mechanizm kontrolowania potencjału białka „nośnika elektronów” w reakcji redoks, którego wszystkie organizmy potrzebują do uzyskania energii. W drodze eksperymentów określono precyzyjną trójwymiarową strukturę białka, w tym atomy wodoru, a obliczenia teoretyczne z wykorzystaniem tych danych pozwoliły na wizualizację struktury elektronowej klastra żelazo-siarka.

Wyniki po raz pierwszy ujawniły, że potencjał elektryczny klastra żelazowo-siarkowego zmienia się dramatycznie w zależności od obecności lub braku pojedynczego wodoru[{” attribute=”” tabindex=”0″ role=”link”>atom at an amino acid side chain, a so-called “nano-switch” mechanism. This research, recently published in the journal eLife, not only deepens our scientific understanding of biological reactions but also provides crucial insights for the future development of ultra-sensitive sensors for oxygen and nitric oxide, as well as novel drugs.

Discovery of “Nano-switch” mechanism that controls the electric potential by a single hydrogen atom! Credit: Ibaraki University

Unveiling Electron Transfer in Ferredoxin

Most reactions in living organisms involve the “electrons” transfer, called redox reaction. For example, respiration and photosynthesis can be classified as redox reactions. Some proteins that assist in the electron transfer contain irons and sulfurs.

Ferredoxin is a small protein that holds iron-sulfur clusters inside it and is known as the “electron carrier” in living organisms. It is a universal protein thought to be present in almost all living organisms; however, the mechanism by which ferredoxin stably carries electrons has remained a mystery to date.

Schematic of Electron Transfer Mechanism by Ferredoxin
A schematic drawing of the electron transfer mechanism by ferredoxin that revealed in this study. Credit: Ibaraki University

Breakthroughs in Structural Biology

In this study, the researchers conducted experiments using the Ibaraki Biological Crystal Diffractometer (iBIX) at the Materials and Life Science Experimental Facility (MLF) in the Japan Proton Accelerator Research Complex (J-PARC) and succeeded in determining the precise three-dimensional structure of a ferredoxin at the hydrogen atomic level in experiments using a neutron beam. Visualizing hydrogen atoms in protein molecules using neutrons is extremely difficult, and only less than 0.2% of the entire protein three-dimensional structure database (Protein Data Bank; PDB) has been reported.

Structure Around the Iron-Sulfur Cluster
Structure around the iron-sulfur cluster. Credit: Ibaraki University

Insights into Electron Transfer Mechanisms

Theoretical calculations using experimental geometry, including hydrogen atoms, were performed to elucidate the electronic structure of the iron-sulfur cluster in the ferredoxin. As a result, it was revealed, for the first time, that an amino acid residue (aspartic acid 64) located far from the iron-sulfur cluster has a significant effect on the probability of electron transfer in the iron-sulfur cluster and plays a role like a switch that controls the electron transfer in ferredoxin. Furthermore, it was shown that the mechanism is universal in various organisms.

The results will not only deepen our scientific understanding of biological reactions but also provide a major clue to the future development of ultra-sensitive sensors for oxygen and nitric oxide and novel drugs.

Reference: “Protonation/deprotonation-driven switch for the redox stability of low-potential [4Fe-4S] ferredoxin” autorstwa Kei Wada, Kenji Kobayashi, Iori Era, Yusuke Isobe, Taigo Kamimura, Masaki Marukawa, Takayuki Nagae, Kazuki Honjo, Noriko Kaseda, Yumiko Motoyama, Kengo Inoue, Masakazu Sugishima, Katsuhiro Kusaka, Naomine Yano, Keiichi Fukuyama, Masaki Mishima , Yasutaka Kitagawa i Masaki Unno, 9 grudnia 2024 r., e-Życie.
DOI: 10.7554/eLife.102506.2



Link źródłowy