Strona główna nauka/tech Odblokowywanie sekretów wirowania 3D magnetycznych Skyrmionów w celu zasilania elektroniki przyszłości

Odblokowywanie sekretów wirowania 3D magnetycznych Skyrmionów w celu zasilania elektroniki przyszłości

19
0


Koncepcja artystyczna technologii spintroniki
nie używany

Naukowcy z Berkeley Lab pogłębili wiedzę na temat skyrmionów magnetycznych, opracowując techniki obrazowania ich struktur 3D.

Te[{” attribute=”” tabindex=”0″ role=”link”>nanoscale objects show promise for revolutionizing microelectronics through enhanced data storage capabilities and reduced energy consumption.

A difficult-to-describe nanoscale structure called the magnetic skyrmion holds potential for creating advanced microelectronic devices, including those with vast data storage capacities and significantly lower power requirements.

However, to reliably integrate skyrmions into future computational devices—potentially even quantum computers—researchers need a more thorough understanding of their properties. Peter Fischer, a senior researcher at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), led a project using 3D X-ray imaging to capture detailed views of skyrmions, specifically measuring the orientations of their magnetic spins throughout the entire object. “Our results provide a foundation for nanoscale metrology for spintronics devices,” Fischer said. This work was recently published in Science Advances.

“Our results provide a foundation for nanoscale metrology for spintronics devices.”

Peter Fischer

Skyrmion 3D Reconstruction
A 3D reconstruction of a skyrmion derived from X-ray images. Credit: Berkeley Lab

Characteristics and Potential of Skyrmions

Magnetic skyrmions can be thought of as spinning circles of magnetism, explains David Raftrey, a student researcher in Fischer’s team who was the lead author of this study. At the center, the magnetic spin is pointing upward, while moving out from the center, the magnetism twists and pulls in a downward direction. What’s more, skyrmions are stable, small, fast, and not easily unfolded, a trait materials scientists dub “topological.”

These spin directions are part of the appeal for skyrmions because they might be used to carry and store information in much the same way that electrons carry and store information in current devices. “However, relying on the charge of the electron, as it is done today, comes with inevitable energy losses. Using spins, the losses will be significantly lower,” Fischer said.

Exploring 3D Structures of Skyrmions

Theoretical knowledge of skyrmions has been based on descriptions of them as 2D objects. However, in the real world of electronics and silicon wafers — no matter how thin — skyrmions have to be dealt with as 3D objects. To put skyrmions to work, or perhaps to one day synthesize custom skyrmions, researchers must be able to examine and understand their spin characteristics throughout the whole 3D object.

If you are looking at a skyrmion magnetic whirlpool from the top and start slicing off layers, you might think that each successive layer would be the same. “But that’s not the case,” Raftrey said. “And we said, okay, how can we get our arms around this? How do we actually demonstrate this?”

Breakthrough in Skyrmion Research

Raftrey took a thin magnetic layer, which was synthesized by colleagues from Western Digital, and patterned a nanodisk using the Molecular Foundry’s nanofabrication facility. To obtain 3D tomographic images he traveled to Switzerland to use a novel imaging technique called magnetic X-ray laminography at a microscopy beamline at the Swiss Light Source.

With X-ray laminography, “You can basically reconfigure and reconstruct [the skyrmion] z tych wielu, wielu zdjęć i danych” – powiedział Raftrey. Był to proces, który trwał miesiące i ostatecznie pozwolił na lepsze zrozumienie struktur spinowych skyrmionu.

Pełne zrozumienie trójwymiarowej tekstury spinowej Skyrmions „otwiera możliwości odkrywania i dostosowywania topologicznych urządzeń spintronicznych 3D o ulepszonych funkcjonalnościach, których nie można osiągnąć w dwóch wymiarach” – powiedział Fischer.

Odniesienie: „Quantifying the topology of Magnetic Skyrmions in Three Dimensions” autorstwa Davida Raftreya, Simone Finizio, Rajesha V. Chopdekara, Scotta Dhueya, Temuujina Bayaraa, Paula Ashby’ego, Jörga Raabe, Tiffany’ego Santosa, Sinéad Griffin i Petera Fischera, 2 października 2024 r., Postęp nauki.
DOI: 10.1126/sciadv.adp8615

Odlewnia Molekularna jest placówką użytkownika DOE Office of Science w Berkeley Lab.

Prace były wspierane przez Biuro Naukowe DOE.



Link źródłowy